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Abstract. We improve human trajectory prediction by introducing Re-
inforcement Learning from Human Feedback (RLHF) and Rejection
Sampling techniques. To quantify human preferences, we parameterize
and pre-train a diffusion backbone that models realistic human behaviors
in the latent space. We then derive the diffusion score based on the
latent trajectory feature, indicating the alignment between predicted
trajectories and human decisions. By using the diffusion score as a re-
ward, we refine the prediction model to generate trajectories preferred by
humans. We further utilize rejection sampling to select the highest-scored
trajectories to enhance the training. We validate our approach through
various numerical experiments, human evaluations, and visualizations,
showcasing a 15% reduction in positional deviation and a 20% increase
in alignment with human preferences. Our proposed diffusion score can
achieve a 67% Top-5 hit rate in retrieving the best candidate path with
the least deviations from true human trajectories, thereby being capable
of guiding realistic decision-making.

1 Introduction

The human trajectory prediction (HTP) task involves accurately forecasting
the future behaviors of human drivers and pedestrians. Considerable progress
has been made in developing advanced deep learning-based prediction models,
including the utilization of Graph Convolutional Networks [20], Transformers [6],
and recent Diffusion models [g].

Existing approaches often train HTP models by supervised regression against
ground truth trajectories. However, this learning objective naturally limits it
to evaluating how well the model aligns with overall human decision-making
processes. Currently, there is no standardized way to quantify this alignment,
making it challenging to design effective learning schemes that can better match
human behavior. The above research challenges lead us to raise two questions:
1) how to properly quantify human preference in a multi-human context with a
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parameterized model, and 2) how to integrate this score into supervised trajectory
modeling to enhance the learning process.

To address the first key question of designing a robust scoring function
to quantify human preference in Human Trajectory Prediction (HTP) task
automatically, we design a robust scoring function that parameterizes human
decisions as trainable models that can map predictions into a latent space where
superior predictions closely align with ground truths. To achieve this, we leverage
the advanced generative diffusion model [10] and quantify the alignment of
predictions with true human decisions.

We diffuse the predictions in latent space and measure its distance from
a random noise vector as residual. We normalize this residual by dividing it
by the ground-truth residual, and then subtracting this ratio from one. The
designed diffusion score quantifies how well the predicted trajectories align with
actual human decisions: a higher score indicates a higher likelihood of accurate
predictions.

To address the second key question of how to integrate this score into
supervised trajectory modeling to enhance the learning process, We propose a
comprehensive pipeline for refining the trajectory prediction diffusion model based
on the Reinforcement Learning from Human Preference (RLHF) methodology.
We design the reward feedback from the predicted trajectories based on their
diffusion scores as a surrogate for human preferences. We guide RLHF procedures
using Proximal Policy Optimization (PPO) [25] for fine-tuning the prediction
model parameters.

Existing approaches typically generate multiple stochastic samples as candi-
date predictions. However, we observe that some samples fail to align with true
human decisions, exhibiting significant deviations from the expected outcomes.
This motivates us to develop RLHF-ReS, which applies rejection sampling to
filter out deviated negative samples and performs policy gradient updates only on
top-scoring trajectories, refining best samples by 10% in final deviations without
sacrificing diversity.

We conduct thorough numerical experiments and human evaluations to val-
idate our methods which achieved substantial gains in trajectory prediction
accuracy, with average displacement improved by 3% and final displacement by
15%. Ablation studies confirm that the diffusion score serves as a superior evalu-
ation metric and also provides a reliable ranking that can be used independently
as an unsupervised metric. This property makes it well-suited for real-world
decision-making scenarios.

In summary, the main contributions of our work include:

— Quantified human preference. We quantify human preference by measuring
trajectories in latent space and developing a diffusion-based rewarding function.

— RLHF with rejection sampling. Our RLHF framework designs to incen-
tivize models to improve trajectory generation through our targeted rewards.

— Numerical results. Our RLHF-ReS method achieves a 15% boost in posi-
tional accuracy and a 20% increase in alignment with human preference by
survey statistics.
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— Feasible realistic decision-making. Our proposed diffusion score achieves
a Top-5 67% recall rate of identifying the best prediction sample.

— In-context learning. We perform continual adaptation of model weights to
longer context windows to obtain an additional 6-9% improvement.

2 Related Work

Trajectory Prediction has been extensively studied due to its importance in
autonomous driving and behavior prediction. Classical predicting methods learn
patterns from historical path and predict the future, with Time-Series generative
models as RNNs [1,9,13,32,35], GANs [7,9,24] and GNNs [20, 26, 33], VAE [34],
and Transformers [5,27,

Gu et al. [8] proposed Motlon indeterminacy diffusion (MID) to utilize diffusion
models [28,29] for generating trajectory predictions. Li et al. [15] proposed a
bidirectional diffusion framework. Mao et al. [19] proposed Leapfrog Diffusion
Model (LED) which learns to emit coarse future trajectory samples directly, then
applies a few more denoising steps to save major time of trajectory generation.

Unlike existing works, we propose a systematic framework that enables fine-
tuning the generation process through quantified human feedback, rather than
relying solely on supervised regression on the positions.

Reinforcement learning from human feedback (RLHF) was widely
applied in robot simulation [3] and game playing [11]. RLHF has recently been
effectively adopted in fine-tuning LLMs such as GPTs to reduce risks, reject
harmful contents, and improve human readability outputs [2,41,12,21,30]. Recent
studies [17,31] showed Rejection Sampling (ReS) can further enhance the
RLHF through fine-tuning from the highest human-rewarded samples, such as in
LLAMA [31] training.

Unlike traditional RLHF and ReS methods, we distill human feedback from
their actual behavior rather than subjective ratings, quantifying their decisions
to enhance stochastic sampling while maintaining diversity and accuracy.

3 Diffusion-Based Prediction Preliminaries

Human Trajectory Prediction (HTP) task. We observe P participating
humans about their 2-D historical trajectories X = { X1, Xo, ..., X7, } € RP*Thx2
over the past T} steps. The HTP aims to estimate the future trajectories
Y = {Yl, Ys, .. YTf} € RP*T1 %2 for the consecutive future T steps with mini-
mized dlsplacements from the ground-truth coordinates Y. Existing approaches
commonly predict K stochastic samples (i.e., 20) for each participant for enclosing
possible future paths.

We briefly summarize existing diffusion-based HTP models, including MID [§]
and LED [19]. We abstract their architectures as two parts: the positional
distribution generator GG and the future trajectory diffusion model D.

The positional generator G encodes the social patterns from the observed
history X . Then G estimates each human’s stepwise future trajectory distribution,
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including global mean g € RY*77%2| K stochastic sample shifts § € RE>PxTsx2
and variances o € R¥*P | and re-parameterize future trajectories as:

u,o,8S—GX), Y =p+o-S. (1)

The diffusion model D aims to denoise the coarse predictions Y™ with
learned priors of human decisions. We denote its forward process as Df and
reverse process as D”.

In forward process, Df diffuses raw trajectories into Gaussian noises with
fixed schedules. The training of D follows DDPM objective [10] which compares
the diffused trajectories with random noises:

L =Exy||D'(X,Y) - 2|3, (2)

in which D7 (X,Y’) stands for the stepwise process of Y; 1 = /T — B;Y; +/Bre:
that gradually adds Gaussian noises €, ~ N(0, 1) to the trajectories with a fixed
[B-schedules.

In reverse process, D" sequentially denoises the coarse predictions YT with 7
denoising steps and produces refined prediction Y as (from right to left):

YooYl Y ...V« D(X,Y). (3)

In training, the generator G, which produces raw YT, can be optimized
through D by regressing the denoised Y in Eq. (3) with ground-truth future Y:

L7 =Ex.pr|[Y —Y|J3 . (4)

4 Trajectory Score (TS) of human preference

We propose a diffusion-based trajectory scoring function as a robust measure
to quantify the alignment between predictions and human preferences. Using
this score, we introduce two novel evaluation metrics that can serve as effective
decision-making signals, even without true human preferences.

We define the diffusion residual for prediction Y based on history X for each
future step t € {1,...,T¢}, as the deviation from noise Z ~ N (0, 1) as follows:

d,(Y:X)=||D'(X,Y) - Z||3 € RF*F*Tr (5)

Where DY (X,Y) diffuses future trajectories into a latent space that embeds
realistic human trajectories. A smaller residual d, indicates a more realistic
prediction ¥ which aligns better with human decisions. Likewise, we calculate
the residual for the ground-truth trajectory Y as an anchor denoted by d4(Y'; X).

We define the trajectory score r (the larger the better) as subtracting the
residual d, normalized by d, from one as:

r(Y,Y;X) = (1 - %) e RFPXTr (6)

A smaller residual d,, results in a larger score r, indicating a more favorable
prediction. This designed score provides a robust signal for both evaluation and
model refinement through RLHF, as detailed in Sec. 5.
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Fig. 1: Our diffusion-score-based RLHF framework. We freeze diffusion model D
and reference generator model. We fine-tune the generator G during RLHF.

4.1 Two novel evaluation metrics

Conventional studies [1,9, 23] adopt the Average Displacement Error (ADE)
and Final Displacement Error (FDE), to evaluate prediction accuracy through
L2-distance between predictions and ground-truth positions, averaged over all
future steps (ADE) or only at the final step (FDE). However, these metrics have
limitations in capturing true human preferences.

Instead, we propose the Average and Final Trajectory diffusion Score, abbrevi-
ated as ATS and FTS, which are the higher the better. These two novel metrics
enable explicit and effective assessment of predicted multi-person trajectories
based on their overall alignment with human preferences.

For prediction Y, the ATS for k-th trajectory sample is the trajectory score
r averaged over all Ty future steps and all P humans in the scene such as:

ATS(k

p Ty
ZZ (k,pt) , (7)
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while the FTS is the score at the final step T such as:
1 P
FTS(k) = 5 ;r(k,p, Ty) - (8)

In Lemma 1, we prove that both ATS and FTS can be properly utilized to
make decisions in real-time scenarios.

Lemma 1. The overall ranking among all stochastic samples, as measured by
ATS (or FTS), is independent of the ground truth. As such, we can select the
best sample without the actual human decisions in advance.

Proof. By definition of ATS as in Eq.(7), we will show that for any pair of two
distinct samples among K stochastic predictions, such as the u-th and v-th sample,
it does not rely on ground-truth information to determine if ATS(u) > ATS(v), or
equivalently if 35, . r(u) > 32, 7 7(v). Given Eq.(6), we have

> 1, dp(u) > 1, dp(v)
rw = 1- 2z By 2 W) o)
Ep,Tf dg Zp,Tf dg

Also, we know that two samples of a same scene share the ground-truth Y, with
%ts resi.dual ZP’Tf.dg > 0 as in Eq.(5). Therefore, the Zpny dy(u) < Zpny d,(v)
immediately implies ZP’Tf r(u) > Zpny r(v). O
Lemma 1 demonstrates that it is possible to obtain a ranking over all stochastic
samples by comparing their diffusion residuals d,, without referencing ground-
truth information. This enables a straightforward selection of the best sample for

online decision-making in autonomous driving scenarios.

5 RLHF for trajectory fine-tuning

The diffusion score leads to design an RLHF framework that enhances the
generation of trajectories with scores as feedback. This refinement process fine-
tunes the generator G to embed quantified human preferences given scene context.
We decompose the framework as four main components as shown in Fig. 1.

Trajectory distribution generator Gy. Gy is pre-trained in a supervised
manner. Gy is structured with multiple transformer layers to capture social
interactions and feed-forward layers to output future distribution parameters.
During RLHF, Gy serves as a policy model that self-refines to generate improved
trajectory samples that adhere to human decisions.

We also instantiate a reference generator Go which will be kept frozen during
the entire fine-tuning process. G functions to prevent Gy from deviating too
much. The Gy is shown in blue in Fig.1; the G is shown in light blue.

Critic model. The critic’s value function, Vy;, serves to evaluate the generated
predictions. Inspired by AlphaGo, we devise the critic to share the same social-
encoder backbone as the policy network, Gy, while having its own trainable
value-head, Vi, (a 2-layer MLP). The trainable Vj, is illustrated in red in Fig.1.
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This value function, Vi (X, Y), evaluates the state-value of each intermediate
step of a trajectory Y given the history X.

Diffuser D serves a two-fold role. The forward process D provides a diffusing
score in Eq.(6) as a reward, as shown in light purple Fig. 1. The reverse process
D" denoises and finalizes the generator’s predictions following Eq.(3), as shown in
dark purple. D is pre-trained by Eq.(2), which will be kept frozen during RLHF.

5.1 Step-A: Predict future state values

In each iteration, we randomly sample a scene comprising both the historical
trajectories X of P humans and their corresponding ground-truth future paths
Y. The pre-trained generator Gy estimates their future trajectories set Y7, as
Eq.(1), which consist of K stochastic samples, each representing trajectories of
all P agents over T future steps.

We apply 7 denoising steps to obtain refined predictions, as Eq.(3), and
denote the above process as:

Y « D'(X,Y7) e RF*PxTrx2 (10)

We utilize the value-head V;, to estimate the state value V' of the predicted
positions at all future steps, such as:

V  Vy(Y) e RF*FXTr (11)

We also obtain the reference prediction Yo by generator G and its reference
state value Vjy estimated in the same fashion. This is shown in Step-A of Fig.1.

5.2 Step-B: Estimate stepwise rewards

Given Y’s diffusion score r estimated by Eq.(6), we aim to estimate the stepwise
prediction reward for policy update.

Following PPO [25], we apply a regularization to limit the KL-divergence
between Gy and the reference model Gy. Given the predicted distributions p, o
emitted from Gy (or Gy), the likelihood py € REXFP*Ts (or py) are:

. 1 ()
po +— N(Y;p,0), ie py= 0'7\/%6 202 . (12)

Thus, the policy KL-divergence, with coefficient 3, is as:

div(pol|lpe) = B - po - [log(po) — log(pe)] - (13)

In summary, the combined stepwise prediction reward R(t) is the diffusion
score penalized by the divergence as R(t) = r(t) — div(t) ,Vt € [1,...,T].

Following the classic policy gradient-based reinforcement learning, we calculate
the advantage of the prediction at each step ¢ as measurement.

Given the reward R and state-value V in Eq. (11), we calculate the advantage
A as the difference of action-value and state-value at each step ¢ as follows:

At)=R(t)+V(E+1) - V(@) , (14)
—_— =~

action-value state-value
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where the action-value decomposes to current reward R(t) plus next-state value
V(t + 1) scaled by a discount rate ~.

The advantage A(t) € RE*F quantifies the quality of each stochastic trajec-
tory sample k for each participant p. A positive advantage indicates a favorable
prediction that aligns with human choices and is otherwise unfavorable.

5.3 Step-C: Optimize policy and value network

To finalize RLHF, we update both the policy generator Gy and the value head
Vi by maximizing the advantage of each generated trajectory.

We design the training objective of policy generator Gy concerning advantage
and likelihood as:

. P . P
P9 = _E PoAdip(P1—e146)-AY. 15
y [min {po c 1}[)(1)0 € €)- A}] (15)

where the clip function constrains the magnitude of the policy update. £? has
two primary objectives: boosting realism by scaling factor %, and improving
human preference by advantage A.

Next, we optimize the state value head V, to accurately estimate the value
of predictions. Given the estimated state values V' produced by V,,, we aim to
minimize the discrepancy between these predicted values and the actual prediction

rewards R. Formally, we design the value loss function as:
Ly =E[max {(V — R)*,(V - R)*}] , (16)

where V = clip(V, Vo — ¢, Vi + €) constrains the update, and Vj is the value from
reference prediction lA/b.

Finally, we compose the RLHF multi-task learning objective by integrating
the policy gradient loss £,? in Eq.(15), value-head loss Efb‘” in Eq.(16), as well

as the positional regression loss £, in Eq.(4), as:

Lyly = L + apLF + o LY (17)

We adopt an end-to-end model training fashion by minimizing the multi-task
objective £ with standard SGD and determine optimal scaling factors ap and
a, through grid search over validation set.

6 RLHF with Rejection Sampling

We are further motivated by an observation that the stochastic predictions Y
emitted by the generator Gy are diverse but infeasible, exhibiting significant
deviations from the expected outcomes. This motivated us to develop a novel
rejection sampling method referred to as RLHF-ReS, which enables the filtering
of highly deviated negative samples during the RLHF policy update process.
Let k* be the index of the best prediction Y* € RP*Ts among all K
stochastic samples. The k*-sample receives the maximum collective diffusion score
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T, integrated over each future step for all participants. Concretely, given stepwise

diffusion score r in Eq.(6), k* is chosen as k* < arg max 25:1 ZtTil Thopt-
RLHF-ReS applies RLHF fine-tuning only with the best scene k* while

rejecting others. We therefore re-write the policy gradient loss £5? in Eq.(15) as:

Ly = —-E min{p—*-A* ,clip(p—*,l—e,l—&—e)-A*} ; (18)
Do Py
as well as the state-value loss Lfﬂ in Eq.(16) as:

£y =max {(V* - R")*, (V" - R")*}, (19)

where the superscript * indicates selecting only the best sample among all
stochastic samples. Finally, the joint training objective of RLHF-ReS is:

Erl* _ l:geg +5P£;9)g* +ﬁvczjal* ) (20)

By applying rejection sampling, we preserve the model’s ability to generate
diverse predictions while enhancing the alignment with human decisions.

7 Experiments

7.1 Datasets and Methods

The pedestrian trajectory datasets include the ETH [22] and UCY [14] which
comprises a total of 5 subsets, as well as the Stanford Drone Dataset
(SDD) [23] collected from campus streets from the sky. Following previous
works [1, 18, 33], each data sequence of the above datasets consists of observed
trajectories spanning 8 frames (3.2 seconds) and future trajectories of the next
12 frames (4.8 seconds).

The NBA [16] dataset is gathered from publicly available NBA games. Each
sequence records the movements of the 10 players and the ball. Each data
sequence consists of observed trajectories spanning 10 frames (2 seconds) and
future trajectories of subsequent 20 frames (4 seconds).

We collect a Robo dataset which simulates a scenario where two robots are
walking together, while another robot approaches them and adjusts its path to
avoid collision. Each episode has a history of 8 frames (4 seconds) and a future
of 12 frames (6 seconds).

Our methods include RLHF which integrates RLHF with diffusion scoring
(Sec. 5) and RLHF-ReS which further utilizes rejection sampling to improve
policy learning (Sec. 6). The baseline methods include Social-LSTM [1|, GAN-
based Social GAN [9], GNN-based STGCNN [20], GroupNet [33], SGCN [26] and
SGCN-SDA [5]. The diffusion-based models include MID [8] and LED [19].

Implementation details. The denoising process uses 100 steps with fast
inference sampling every 3 steps, following the standard DDPM framework. For
noise scheduling, we use a linear interpolation for 3, ranging from 10=* (initial)
to 5-1072 (final).
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Through grid search, the optimal scaling factors are o, = 1.0 and o, = 5.0
in RLHF objective Eq.(17), and 8, = 0.3 and 8, = 1.5 for RLHF-ReS in Eq.(20).
The training process utilized GTX 3080Ti, running for 100 epochs over 12 hours
on the ETH-UCY datasets and 24 hours on the NBA, SDD, and Robo datasets.
The G follows LED [19] with a two-layer transformer-based social encoder with
a hidden size 256.

7.2 Result analysis

Table 1: The minADEoq | minFDEyq (J) results of trajectory prediction on the
benchmark datasets.

|SGCN [26] SDA [5] GrpNet [33] MID [¢] LED [19] |RLHF (ours) RLHF-ReS
ETH | 0.63/1.03 0.55/0.86 0.46/0.73 0.43/0.69 0.33/0.60| 0.34/0.53 0.31/0.48
HOTEL| 0.32/0.55 0.28/0.44 0.15/0.25 0.19/0.27 0.20/0.40 | 0.19/0.31  0.17/0.30
UNIV | 0.37/0.70 0.37/0.69 0.26/0.49 0.26/0.43 0.31/0.62| 0.30/0.56  0.29/0.48
ZARA1 | 0.29/0.53 0.27/0.46 0.21/0.39 0.23/0.39 0.18/0.31| 0.19/0.30 0.18/0.30
ZARA2 | 0.25/0.45 0.24/0.37 0.17/0.33 0.21/0.32 0.16/0.28 | 0.15/0.25 0.15/0.26
NBA | 1.09/1.96 0.92/1.21 1.13/1.69 0.96/1.27 0.80/1.11| 0.79/1.02 0.77/1.00
Robo | 0.43/0.70 0.41/0.66 0.43/0.68 0.29/0.40 0.22/0.35| 0.22/0.36 0.21/0.29
AVG | 0.48/0.85 0.43/0.67 0.40/0.65 0.37/0.54 0.31/0.52| 0.31/0.48 0.30/0.44

Table 2: The maxATSs and maxFTSsy (1) on the benchmark datasets.

ISGCN [26] SDA [5] GrpNet [33] MID [s] LED [19] |RLHF(ours) RLHF-ReS
ETH ]0.16/-0.14 0.13/-0.15 0.21/0.02 0.39/0.12 0.50/0.18 | 0.50/0.19 0.54/0.21
HOTEL|0.05/-0.85 -0.02/-0.92 0.01/-0.87 0.05/-0.62 0.08/-0.66| 0.14/-0.53 0.19/-0.38
UNIV [0.13/-0.74 0.12/-0.72 0.15/-0.39 0.27/-0.33 0.46/-0.20| 0.47/-0.20 0.47/-0.21
ZARA1 |-0.02/-0.66-0.05/-0.65 1.05/-0.65 0.31/-0.39 0.32/-0.37| 0.33/-0.36 0.35/-0.34
ZARA2[0.00/-0.96 0.02/-1.06 0.17/-0.93 0.24/-0.45 0.33/-0.41|0.38/-0.38 0.37/-0.40
NBA  |-3.32/-4.72-2.20/-3.69 -0.71/-2.38 0.09/-1.21 0.23/-0.61| 0.23/-0.60 0.24/-0.60
Robo |-1.35/-3.25-0.94/-2.49 -0.31/-1.81 0.02/-1.07 0.07/-0.59| 0.15/-0.39 0.19/-0.31
AVG  |-0.62/-1.62-0.42/-1.38 0.08/-1.00 0.20/-0.56 0.28/-0.38| 0.31/-0.32 0.34/-0.29

We show ADE and FDE({) in Table 1. Following previous works, we report

the minimum ADE and FDE over K = 20 stochastic samples. The best values
are presented in bold, while the second best values are underlined. We observe:

1) Our RLHF-ReS achieves the lowest ADE and FDE among all methods,
reducing previous state-of-the-art LED by 3.2% in ADE (0.30 vs. 0.31) and 15.4%
in FDE (0.44 vs. 0.52), as shown in last column of Table 1.
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2) RLHF-ReS achieves a substantial decrease in FDE such as 9.9% in NBA
and 17.1% in Robo, as rejection sampling tends to reduce high deviations.

3) RLHF performs second-best among all methods, which ties with LED in
ADE but reduces FDE by 10.5%, thanks to the RLHF fine-tuning procedures.

4) We observe a similar trend on SDD, where our RLHF-ReS outperforms
LED [19] by 4%/16% in ADE/FDE.

We show evaluations with our proposed metrics ATS and FTS (1) in Table 2,
computing the maximum ATS and FTS over K = 20 samples.

1) Our RLHF-ReS also achieves the highest ATS and FTS, with a 0.34 in
ATS and —0.29 in FTS, leading the existing LED 0.28/—0.38 by 21.4% in ATS
and 21.1% in FTS. This proves its better alignment with human decisions.

2) RLHF-ReS outperforms the second-place RLHF by 9.7%/9.4%, proving
the efficacy of rejection sampling in enhancing human preferences.

3) Notably, maxATSyq scores are predominantly positive, whereas maxFTSy
scores are negative. Due to the definition in Eq. (6), the max ATS among 20
samples is likely to exceed the ground-truth value, while the final step score
(FTS) is lower due to accumulated deviations.

7.3 Visualizations and case studies

We provide visualizations of predicted trajectories in Fig. 2. We display the top-2
best predictions in ATS, shading them with weights proportional to the scores.
We place realistic human decisions in the first column. In the ETH dataset (1st
row, 1st col.), the upper-right person (orange) had minimal dynamics, captured
by one stochastic prediction of our RLHF-ReS (2nd col.) model.

The NBA scene on the 2nd row exhibits dynamic trajectories. The ball (1st
col., No.10, purple line) was passing through attacking player No.1 (orange), then
crossing defending player 6 (green) and player 5 (pink), before being received
by player 4 (light blue). Both RLHF-ReS (2nd col.) and RLHF (3rd col.) could
properly reason about this order of players. The LED method (4th column) failed
to accurately capture the interaction between players No.5 and No.4.

7.4 Human Evaluations

We conducted a human evaluation of generated trajectories through a five-
point Likert scoring survey. Participants were presented with 12 scenes featuring
predictions from four methods and true human decisions. Twenty human judges
rated each method on a scale of 1-5, assessing the social appropriateness and
kinetics of the predicted paths.

Table 3 shows our proposed RLHF-ReS method achieves the highest human-
evaluated scores, with an average rating of 3.66. Notably, the ranking of human
scores aligns well with our ATS and FTS scores, with RLHF-ReS leading the
way, followed by RLHF, LED, and SGCN-SDA.

Our statistical analysis reveals a significant difference between RLHF-ReS
and other methods: RLHF-ReS is significantly better than LED and SGCN-SDA
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Fig.2: Scenes from ETH and NBA. The first column displays human trajectories.

The second to last columns show predictions from RLHF-ReS, RLHF, LED |
and SGCN-SDA [5]. We display the top-2 most likely predictions for each person.

Table 3: Human evaluations, * is significance level, ns is not significant.

Model [Human Score(1) ATS(1) FTS(1)
RLHF-ReS |  3.66 0.44 -0.31

RLHF 3.58"* 0.40** -0.33"°
LED 3.28%** 0.40** -0.41**
SGCN-SDA 1.42%** -0.57** -1.92**

|

at a 1% level (indicated by ***) in human score, and also outperforms them at a
5% (indicated by **) level in ATS and FTS scores.

8 Ablation Studies

8.1 Hand-crafted reward. We employed a hand-crafted Social Distance Accu-
racy (SDA) reward, which clusters social groups and incentivizes close distances
between those in the same group [5]. We observed that RLHF-SDA has a close
ADE (0.32 vs. 0.30) but has a much larger FDE (0.53 vs. 0.44). This indicates
the SDA reward leads to significant final-step deviations. Our approach mitigates
this by projecting the global configuration into a latent space, providing more
reliable reward signals.

8.2 Realistic decision making through ATS/FTS metrics. Lemma 1 shows
that ATS (or FTS) yields a proper ranking of stochastic samples without ground
truth knowledge, allowing us to investigate their confidence in retrieving optimal
decisions. We take Top-1 and Top-5 ATS/FTS predictions and check if the target
sample with minimum ADE/FDE is among them. We consider a successful recall
if the target sample is retrieved. The overall recall rate measures ATS/FTS
decision-making capability.
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The Top-1 ATS recall rate (i.e., max ATS sample matches exactly min ADE)

is 21.9%, increasing to 67.4% regarding Top-5 recall rate. Similarly, the Top-1
FTS recall rate is 18.4%, increasing to 57.4% for the Top-5 case. These results
show that ATS and FTS metrics are suitable for real-time decision-making,
providing reliable predictions for further planning.
8.4 In-context human decision prompting Inspired by prompting LLMs
with examples to enhance the generation, we prompt our model with a longer
context window and adapt it to recent scenes using RL rewards. During inference,
we update the model weights using policy gradient after feeding it five consecutive
segments (a 16-second window of 40 frames) and predict the next 12 frames.

We observed significant improvements in ADE and FDE across various
datasets using RLHF-ReS with in-context learning. Specifically, in-context learn-
ing decreased ADE by 6.7% (0.28 vs. 0.30) and FDE by 9.1% (0.40 vs. 0.44). This
outcome demonstrates the value of continuous model refinement to capture the
scene context, a crucial consideration for applications like autonomous driving.
8.5 The number of participants. We evaluate RLHF on ZARA2 scenes with
varying human counts (bins at 5, 10, 20). We find that RLHF consistently reduces
ATS by 10-20% and FTS by 7-9%. The benefit slightly slides at more than 10
people due to scene complexity.

9 Conclusion

We devise a robust diffusion-based scoring function that approximates human
preferences based on the diffusion residuals. With rejection sampling, we tailored
the RLHF to refine the diffusion network. Our methods achieved an improvement
of 5-20% in prediction precision and 10-20% enhancement in aligning the predic-
tions with human preferences. Extensive ablation studies prove that the designed
ADFs and FDFs metrics based on diffusion score are suitable for unsupervised
decision making with high best trajectory recall rates.
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